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Finite-volume lattice Boltzmann schemes in two and three dimensions
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Simple and practical finite-volume schemes for the lattice Boltzmann equation are derived in two and three
dimensions through the application of modern finite-volume methods. The schemes use a finite-volume vortex-
type formulation based on quadrilateral elements in two dimensions and trilinear hexahedral elements in three
dimensions. It is shown that the schemes are applicable to domains with irregular boundaries of arbitrary shape
in two and three dimensions.@S1063-651X~99!10809-2#
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I. INTRODUCTION

In the past ten years, there has been steadily increa
interest in the lattice Boltzmann method~LBM ! as a novel
approach for solving the fluid dynamics problems. This
due to the fact that the LBM has some very attractive f
tures such as inherent parallelism, simplicity of coding, a
capability of incorporating complex geometry and micr
scopic interactions in multiphase fluids@1–4#.

However, if one compares the LBM with the state-of-th
art computational-fluid-dynamics~CFD! techniques, one
finds that the LBM still has some shortcomings. One of th
is that the LBM is restricted on a special class of uniform a
regular spatial lattices. The limitation of using uniform la
tices is particularly severe in many practical applicatio
where the complex geometry of boundaries cannot be w
fitted by regular lattices. This is in contrast with the mode
CFD techniques, which are generally capable of accom
dating fairly complex spatial meshes. Motivated by su
considerations, several researchers have attempted to e
the applicability of the LBM to irregular lattices. Succi an
his collaborators@5# were the first to propose a finite-volum
formulation of the lattice Boltzmann equation~LBE!. How-
ever, the empirical formulas are quite complicated even
the simple rectangular meshes, and a free parameter has
introduced and adjusted in order to minimize the numer
diffusion. Quite recently, another elegant finite-volum
scheme was developed by Chen@6#. In another approach
proposed by He, Luo, and Dembo@7# for an arbitrary rect-
angular mesh, the density distributions move along their
spective directions of velocities to points which may or m
not be on grid points. An interpolation step is thus introduc
to determine the density distributions at the grid points
the next time step. However, the above-mentioned
proaches of using irregular meshes are not satisfactory in
sense that the topology of the meshes used in the prop
models is not arbitrary. In recent papers@8,9# we have pro-
posed a new scheme based on modern finite-volume met
@10,11# which is applicable to irregular meshes with arbitra
connectivity. While our methods follow from an applicatio
of finite-volume methods to the LBE, they still keep much
the simplicity of the conventional LBM. In this paper, we a
going to give a detailed account of the quadrilateral sche
PRE 601063-651X/99/60~3!/3380~9!/$15.00
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and validate it through extensive simulations.
Though successful in two dimensions, our 2D scheme

cannot deal with the realistic fluid flows which are usua
three-dimensional problems. In this paper, we are also go
to present a three-dimensional~3D! scheme. In order to be a
practical scheme, a new scheme should be simple enoug
three dimensions and easy enough to code. We believe
our scheme satisfies these requirements. And after all,
scheme is accurate, a point which will be proven by comp
ing the numerical results with analytical ones. Designing
3D scheme is a nontrivial work. A great deal of care has
be taken in order to create a simple and practical scheme
what follows, one can see that our model for the hexahe
elements looks as if the interpolationwerelinear. In fact, it is
not linear but cubic in nature. This feature is remarkable a
is indeed a product of achieving the goal of designing
easy-to-use, practical scheme while maintaining accurac

To appreciate the modern CFD techniques, one ha
begin with grid ~or mesh! generation for the physical do
main. There are two general types of grids commonly use
the modern CFD for discretizing the domain: structured gr
and unstructured grids. A structured grid is ani -j -ordered
array of points in two dimensions and ani -j -k-ordered array
of points in three dimensions. Topologically and compu
tionally, the structured grid is still rectangular. An unstru
tured grid, often used in finite-element computations, is
array of points with no particular logical order. It offers mo
flexibility in representing complex geometries. However, th
flexibility does not come without a price. The spatial rel
tionship between one grid and the others must be explic
stated since there is no logical relationship between one
and its neighbors in their indexes. Thus the computatio
speed with unstructured grids is often reduced compa
with using structured ones. Thanks to the recent developm
of grid generation techniques@12,13#, the structured grids
can now be generated over the entire physical domain w
very complex shape. Although our finite-volume schem
are applicable to both structured and unstructured grids w
arbitrary connectivity, in this paper we will focus on presen
ing the explicit finite-volume schemes in structured grids

Grids can be constructed from a variety of finite elemen
One often uses a set of triangular elements~usually for un-
structured grids! or quadrilateral elements~often for struc-
3380 © 1999 The American Physical Society
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PRE 60 3381FINITE-VOLUME LATTICE BOLTZMANN SCHEMES IN . . .
tured grids! in two dimensions, and tetrahedra elements~usu-
ally for unstructured grids! or hexahedra elements~often for
structured grids! in three dimensions. The size and shape
the element can be varied to place more elements as
wishes in an area of interest. It is important to distinguish
difference between finite elements and grids: Grids are
numerical nodes in the physical domain, while finite e
ments are the basic geometric structures covering the
main. Thus, one can have structured grids with triangu
elements~e.g., a simple regular triangular lattice with s
neighbors around each node!, and one can also have unstru
tured grids with triangular elements~e.g., an irregular trian-
gular mesh with different number of neighbors around d
ferent nodes!. In what follows, the formulations of our finite
volume methods for the lattice Boltzmann equation w
quadrilateral and hexahedral elements are given in Se
and Sec. III, respectively; numerical simulation results
various fluid problems are presented in Sec. IV, and Sec
concludes with a discussion and summary.

II. FINITE-VOLUME LATTICE BOLTZMANN SCHEME
IN TWO DIMENSIONS

In the original formulations of the LBM it was understoo
that the discretization of velocity space is closely coupled
that of physical space. For example, one model commo
used is the nine discrete velocities in association with
square lattice in physical space in two dimensions. Simila
for a triangular spatial lattice, the seven discrete veloci
were used. But as discovered in recent papers@7,14,15#, this
coupling is actually not necessary. The discretizations in
locity space and in physical space can be treated inde
f
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dently in general. Our starting point of this paper is the l
tice Boltzmann equation~LBE!. Recently, it was shown@16#
that the LBE can be directly derived from the Boltzma
equation by discretization of velocity space, giving a so
root to the LBE. General finite-difference discretizations
the LBE can be found in Ref.@15#.

In the following, we present our finite-volume lattic
Boltzmann method~FVLBM ! with quadrilateral elements in
two dimensions. We start with the lattice Boltzmann equ
tion, which reads:

] f i

]t
1vi•“ f i5V i1avi•F, ~1!

where f i is the particle distribution function associated wi
motion along thei th direction in velocity space,vi is the
velocity in thei th direction,i 51,2, . . . ,m with m the num-
ber of different velocities in the model,F is the external
body force, coefficienta51/( iv ix

2 51/( iv iy
2 , andV i is the

collision operator commonly approximated by the Bhatrag
Gross-Krook model@17#, or the single-time relaxation ap
proximation,

V i52
1

t
~ f i2 f i

eq!, ~2!

where f i
eq is the local equilibrium distribution andt is the

relaxation time. Here we will choose the nine velocities-
~D2Q9—two dimensions, nine velocities! model@18# for the
velocity discretization and arbitrary quadrilateral element
the spatial discretization. The nine discrete velocities are
fined by
vi5H ~0,0!, i 50

„cos@~ i 21!p/2#,sin@~ i 21!p/2#…, i 51,2,3,4

A2„cos@~ i 25!p/21p/4#,sin@~ i 25!p/21p/4#…, i 55,6,7,8

~3!
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and the equilibrium distributionf i
eq is given by@18#

f i
eq5wir@11 3

2 ~vi•u!1 9
2 ~vi•u!22 3

2 uuu2#, ~4!

where

r5(
i

f i , ~5!

u5(
i

f ivi /r ~6!

are the density and velocity, respectively, and

wi5H 4/9, i 50

1/9, i 51,2,3,4

1/36, i 55,6,7,8.

~7!
The equilibrium distribution is formulated specifically to re
cover the Navier-Stokes equation in the low-Mach-num
limit with kinematic viscosityn5t/3 @14,15#.

In order to solve the above LBE@Eq. ~1!#, one could use
one of two common methods: the finite-difference meth
and the finite-volume method. In the finite-difference a
proach, the differential form of the equation is solved at d
crete space points. On the other hand, the finite-volume
proach solves an integral form of the equation. Instead
solving the equation at discrete points, the equation is sol
over a small ‘‘control volume.’’ The finite-volume approac
has two major advantages over the finite-difference appro
in some area: the integral form of the equation can cap
discontinuities in the solution, and it is more suitable f
complex geometry. In the following we illustrate how ou
finite-volume scheme is constructed.

Figure 1~a! shows a generic situation in which quadrila
eral elements surround an interior node of the grid. Here
use the finite-volume method of cell-vertex type. In this ty
of formulation, allf i ’s at the grid nodes are known. We nee
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to calculate thef i ’s at non-grid-node positions. Thesef i val-
ues at non-grid-node positions would be interpolated fr
the knownf i ’s at the grid nodes using standard interpolati
procedures depending on the type of elements. Let us br
describe how the interpolation is done in the case of qua
lateral elements. Suppose that the fluid domain is dec
posed into a union of quadrilaterals. Furthermore, we ass
that if any two quadrilaterals intersect, the intersection c
only be their common edge. Each quadrilateral can
viewed as the one-to-one image of the unit square via a
ordinate transformation. More specifically, in Fig. 1~b! the
bottom quadrilateralQ in the xy plane has verticesA, B, C,
and D. There is a unique bilinear mapping of the top u
squareQ̂ in the jh plane ontoQ:

FIG. 1. ~a! Diagram of finite elements sharing one comm
node. Here P,P1 ,P2 ,...,P8 stand for the mesh grid points
A,B,C,D,E,F,G,H make the edges of the control volume~poly-
gon! over which integration of the PDE of Eq.~1! is performed;~b!
diagram for mapping between a unit quadrilateral~upper part! and a
general one~lower part!.
fly
ri-

-
e

n
e
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t

x~j,h!5xA1~xB2xA!j1~xD2xA!h

1~xC2xA2xD2xA!jh, ~8!

y~j,h!5yA1~yB2yA!j1~yD2yA!h

1~yC2yA2yD2yA!jh. ~9!

This mapping maps (0,0),(1,0),(1,1),(0,1) toA,B,C,D, re-
spectively, and the straight coordinate lines in thejh plane
to the straight lines in thexy plane as shown in Fig. 1~b!.
The particle distribution functionf i is then assumed to b
linear along the images of either aj or h line in the xy
plane. Notice thatf i is not bilinear in thex andy variables,
but in thej and h variables. This is the familiar so-calle
isoparametric representation commonly used in the fin
element method~see Ref.@10#!.

We use the bilinear interpolation to obtain the functi
value at any position from the values at the four nodes.
‘‘bilinear’’ we mean that a function on aunit quadrilateral
element @0<j<1,0<h<1# has the form of f (j,h)5a0
1a1j1a2h1a3jh, wherea0 to a3 are determined by the
function values at the four nodes. Thus the function is lin
along constantj or h lines. For any quadrilateral elemen
other than a unit quadrilateral element, a mapping should
first used to transfer the element on thexy plane into a unit
on the jh plane, and therefore the function on a gene
quadrilateral element typically has terms including all qu
dratic terms ofx2, y2, and xy. It should be noted that the
function is linear along the images of constantj andh lines.

We choose the control volume to be the polyg
ABCDEFGH surrounding the grid nodeP as shown in Fig.
1~a!. HereA is the midpoint of edgePP1 , C is the midpoint
of edge PP3, and B is the geometric center of elemen
PP1P2P3. Thus, the coordinatesxA , xB , andxC are given
by

xA5~xP1xP1
!/2, xB5~xP1xP1

1xP2
1xP3

!/4,

xC5~xP1xP3
!/2. ~10!

Likewise,D is the center of elementPP3P4P5. The integra-
tion control volume consists of polygonPABC, PCDE,
PEFG, andPGHA. In the following we focus on the inte
gration over the polygonPABC. Similar integrations would
be done over all other polygons and the results summed

The integration of the first term in Eq.~1! is approximated
as

E
PABC

] f i

]t
ds5

] f i~P!

]t
SPABC, ~11!

whereSPABC is the area ofPABC and f i(P) is the f i value
at grid nodeP. In what follows, the grid-node index is give
in parentheses following thef i values. In the above equation
we have made an approximation thatf i is constant over the
area PABC to prevent us from having to solve a set
equations. This kind of approximation known as ‘‘lumping
is a common practice used in the finite-volume methods@11#.

The integration of the second term of Eq.~1! will give
fluxes through the four edgesPA, AB, BC, andCP. Since
we will sum over all the polygons likePABC, PCDE,
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PEFG, and PGHA, the net flux through internal edge
(PA, PC, PE, andPG) will cancel out. Therefore, we will
omit the explicit expression from the internal edges,

E
PABC

vi•¹ f i ds5vi•E
AB

f i dl1vi•E
BC

f i dl1I s , ~12!

where I s represents fluxes through internal edges. With
standard assumption of bilinearity off i ’s in quadrilateral el-
ements, the flux is then given by

E
PABC

vi•“ f i ds5vi•nABl AB@ f i~A!1 f i~B!#/2

1vi•nBCl BC@ f i~B!1 f i~C!#/21I s ,

~13!

wherenAB and nBC are the unit vectors normal to the edg
AB andBC, respectively, andl AB and l BC are the lengths of
AB andBC, respectively.

With the assumption of bilinearity off i and f i
eq over the

quadrilateral elements, the integration over the collision te
of Eq. ~1! @i.e., Eq.~2!# results in the following formula:

2E
PABC

1

t
~ f i2 f i

eq!ds52
SPABC

t
@D f i~P!1D f i~A!

1D f i~B!1D f i~C!#/4, ~14!

where

D f i~P!5 f i~P!2 f i
eq~P!, ~15!

D f i~A!5 f i~A!2 f i
eq~A!, ~16!

D f i~B!5 f i~B!2 f i
eq~B!, ~17!

D f i~C!5 f i~C!2 f i
eq~C!. ~18!

Here f i(A), f i(B), f i(C) and their corresponding equilib
rium particle distribution f i

eq(A), f i
eq(B), f i

eq(C) functions
are the values at nongrid nodesA, B, and C, respectively.
These may be obtained by interpolation from the four g
nodes at elementPP1P2P3,

f i~A!5@ f i~P!1 f i~P1!#/2, ~19!

f i~B!5@ f i~P!1 f i~P1!1 f i~P2!1 f i~P3!#/4, ~20!

f i~C!5@ f i~P!1 f i~P3!#/2, ~21!

f i
eq~A!5@ f i

eq~P!1 f i
eq~P1!#/2, ~22!

f i
eq~B!5@ f i

eq~P!1 f i
eq~P1!1 f i

eq~P2!1 f i
eq~P3!#/4, ~23!

f i
eq~C!5@ f i

eq~P!1 f i
eq~P3!#/2. ~24!

Substituting Eqs.~15!–~24! into Eq. ~14!, we obtain
e

2E
PABC

1

t
~ f i2 f i

eq!ds52
SPABC

t
@9D f i~P!13D f i~P1!

1D f i~P2!13D f i~P3!#/16. ~25!

With these results, the integration of Eq.~1! over the
polygonPABC is complete. The integration over the who
control volumeABCDEFGH is just the sum of contribu-
tions from all these terms over different polygonsPABC,
PCDE, PEFG, andPGHA. Therefore,f i at grid nodeP is
updated as follows:

f i~P,t1Dt !5 f i~P,t !1
Dt

SP
S (

aroundP
~collisions!

2 (
aroundP

~fluxes! D 1avi•F, ~26!

whereSP is the total area of the control volume around gr
nodeP, and ‘‘collisions’’ and ‘‘fluxes’’ refer, respectively, to
the finite-volume-integrated contributions from the collisio
term and fluxes.

In the finite-volume scheme of cell-vertex type, the u
date of thef i ’s at boundary nodes is similar to that for inte
rior nodes except that at the boundary the corresponding
volumes are half-covolumes@8#. Let us look at Fig. 1~a!
again and assume thatP5 , P, and P1 are boundary nodes
separating the fluid~upper half! from the lower half. As for
the interior fluid nodes, we updatef i ’s at P by covolume
integrals. However, the covolume is now not complete in
2p directions as the polygonsPEFG and PGHA are now
not included. This leads to one difference when integrat
the second term of Eq.~1! over polygons PABC and
PCDE. The flux terms over edgesPA and EP, which we
omitted in the case of interior nodes@i.e., I s in Eq. ~12!# as
they were internal fluxes, must now be included in the c
culation. They are actually easy to evaluate as shown in
~12! for fluxes over other edges. The velocity of the boun
ary wall is used when we calculatef i

eq for the boundary
nodes using Eq.~4!. This is to enforce the nonslip boundar
condition.

III. FINITE-VOLUME LATTICE BOLTZMANN SCHEME
IN THREE DIMENSIONS

In three dimensions, we choose the nineteen velocities
the velocity discretization as in the D3Q19 model@18#. The
equilibrium distribution functions are

f i
eq5 1

3 r@12 3
2 u•u# if uvi u250, ~27!

f i
eq5 1

18 r@113~vi•u!1 9
2 ~vi•u!22 3

2 u•u# if uvi u251,
~28!

f i
eq5 1

36 r@113~vi•u!1 9
2 ~vi•u!22 3

2 u•u# if uvi u252,
~29!

where r5( i f i and ru5( i f ivi are the macroscopic mas
density and momentum density, respectively.

Given a flow domain, we can fit it with a grid made up
hexahedral elements. The unknownf i ’s are sought at the
vertices~nodes! of the elements labeled asPi ’s in Fig. 2. For
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easy visualization we have drawn the element as a cube.
interior f i values are to be computed by interpolating fro
the f i ’s at the nodes using the trilinear interpolation proc
dures. By trilinear we mean that a function in aunit hexahe-
dral element @0<j<1,0<h<1,0<x<1] has the form
of f (j,h,x)5a01a1j1a2h1a3x1a4jh1a5jx1a6hx
1a7jhx, where a0 to a7 are determined by the functio
values at the eight nodes of the hexahedral element. Thu
function is bilinear along constantj or h or x planes, and
linear along any axis if the other two are kept constant.
any hexahedral element other than the unit element, a m
ping should be first used to transfer the element inxyzspace
into a unit in jhx space, and therefore the function in
general hexahedral element typically has terms including
cubic terms such asx3 andx2y.

In Fig. 2, we are interested in the update off i ’s at node
P0. One could imagine that there are eight hexahedral
ments sharing nodeP0, though we have only drawn18 part of
them ~one hexahedral element! for clear illustration in this
figure. The~one-eighth of! control volume atP0 is chosen as
the hexahedronP0ABCDEFGshown in Fig. 2. HereA, C,
and G are the midpoint of edgeP0P1 , P0P3, and P0P7,
respectively,B, D, and F are the geometric center of are
element P0P1P2P3 , P0P1P4P7, and P0P3P6P7, respec-
tively, and E is the geometric center of volume eleme
P0P1P2P3P4P5P6P7. In the following, we focus on the in
tegration over the hexahedronP0ABCDEFG. The integra-
tion of the first term in Eq.~1! is approximated as

E
P0ABCDEFG

] f i

]t
dv5

] f i~P!

]t
VP0ABCDEFG, ~30!

where VP0ABCDEFG is the volume of hexahedro

P0ABCDEFGand f i(P0) is the f i value at nodeP0.
Integration of the second term of Eq.~1! will give fluxes

though six surfacesP0ABC, P0ADG, P0CFG, BCEF,
ABDE, andDEFG. As in two dimensions, we will omit the
fluxes from the internal surfaces. With this, we have

FIG. 2. Diagram of one hexahedral element and its correspo
ing control volume. HereP0 ,P1 ,..., andP7 are the grid nodes.
ny

-

the

r
p-

ll

e-

E
P0ABCDEFG

vi•“ f i dv5vi•E
ABDE

f i dS1vi•E
BCEF

f i dS

1vi•E
DEFG

f i dS. ~31!

With the assumption of trilinearity off i ’s in hexahedral ele-
ments, the flux is

E
P0ABCDEFG

vi•“ f i dv5I 11I 21I 31I s ~32!

with

I 15vi•E
ABDE

f i dS

5vi•nABDESABDE@ f i~A!1 f i~B!1 f i~D !1 f i~E!#/4,

~33!

I 25vi•E
BCEF

f i dS

5vi•nBCEFSBCEF@ f i~B!1 f i~C!1 f i~E!1 f i~F !#/4,

~34!

I 35vi•E
DEFG

f i dS

5vi•nDEFGSDEFG@ f i~D !1 f i~E!1 f i~F !1 f i~G!#/4,

~35!

wherenABDE , nBCFE , andnDEFG are the unit vectors norma
to the surface planeABDE, BCEF, and BCEF, respec-
tively, andSABDE , SBCEF , andSDEFG are the areas of sur
faces ABDE, BCEF, and DEFG, respectively.
f i(A), f i(B), . . . ,f i(G) and their corresponding equilibrium
particle distribution functions are the values of these va
ables at non-node positionsA,B, . . . ,G. These functions
may be obtained by interpolation from the nodes at elem
P0P1 , . . . ,P7, e.g., f i(A)5@ f i(P0)1 f i(P1)#/2, f i(B)
5@ f i(P0)1 f i(P1)1 f i(P2)1Pi(P3)#/4.

Assuming the trilinearity off i and f i
eq over the three-

dimensional hexahedral elements, the integration over
collision term of Eq.~1! results in the following formula:

2E
P0ABCDEFG

1

t
~ f i2 f i

eq!dv

52
VP0ABCDEFG

t S (
k50

7

ckD f i~Pk!D , ~36!

whereD f i5 f i2 f i
eq, c0527/64, c15c35c759/64, c25c4

5c653/64, andc551/64. Thef i(Pk) and their correspond
ing equilibrium particle distribution functions are the valu
of these variables at nodePk .

With these results, the integration of Eq.~1! over the 1
8

control volume, i.e., the hexahedronP0ABCDEFGcentered
at nodeP0, is complete. The integration over the whole co
trol volume is just the sum of contributions from all the

d-
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terms over different hexahedra. Therefore,f i at nodeP0 is
updated formally as in Eq.~26!, where ‘‘collisions’’ and
‘‘fluxes’’ are now referring, respectively, to the three
dimensional finite-volume-integrated contributions from t
collision term and the fluxes.

IV. NUMERICAL EXAMPLES

In this section, we demonstrate the validity and accur
of the FVLBM schemes using examples with known ex
solutions, or comparing the results with the ones obtai
from other traditional methods. The first example is t
two-dimensional Poiseuille flow between two parallel plat
We choose the fluid densityr51.0 and relaxation time
t51.0(n5t/351/3) with external body force F
52.60431025ex . The numerical parameters for the tim
and grid steps areDt50.5, Dx51.0, andDy51.0. The total
Nx3Ny564332 mesh grids are used. We set the initial co
ditions for the macroscopic velocity field to be zero. Figure
shows the numerical results of the steady velocity profile
the corresponding analytical solutionux(y)5FL2/(8rn)@1
2(2y/L21)2#, whereL5DyNy532 is the channel width
The agreement with the theoretical results is excellent,
the global error was found to beL152.1531025.

Next, we present two-dimensional simulation of rotati
Couette flow where fluid is contained between two conc
tric cylinders. The outer cylinder rotates with velocityV2eu ,
while the inner cylinder rotates with velocityV1eu , i.e.,
vu(r 5R1)5V1 andvu(r 5R2)5V2. The important point to
note here is that this particular problem possesses high s
metry for flow field, however the FVLBM scheme reporte
here needs no preassumptions of symmetry. Here we h
taken the radii of the two cylinders to beR1530 andR2
560, the velocity of the inner cylinderV1520.01, and the
outer cylinderV250.01. The numerical parameters for th
FVLBM are r51.0, t50.5, Dt50.25, Du52p/180, and
Dr 51.0. TheNu3Nr5180330 mesh grids are used. We s
the initial conditions for the macroscopic velocity field to b
zero. In Fig. 4 we show the numerical results of the ste
velocity profile and the corresponding analytical so
tion vu(r )5@(V2R22V1R1)r 1R1R2(V1R22V2R1)/r #/(R2

2

FIG. 3. Numerical velocity profile~data points! in the steady
state for the Poiseuille flow compared with the analytical solut
~solid curve!.
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2R1
2)50.01(r /30260/r ). One can see from Fig. 4 that th

agreement with the theoretical results is excellent. The glo
error was found to beL151.1631025.

To illustrate the flexibility of the above FVLBM scheme
we then simulate a two-dimensional Poiseuille flow betwe
two curved plates as shown in Fig. 5. The curved channel
sinusoidal modulation in the top and bottom plates w
ybottom5A sin(p/212px/l) and ytop5L@11A sin(3p/2
12px/l)#. Here A is the modulation amplitude,l is the
modulation periodicity, andL is the channel width in the
limit of zero amplitudeA50. Due to the symmetry of the
system, we limit ourselves to the computational doma
with one wavelengthl in the x direction. In the simulation
we usedl52L, A50.15, andL532. The numerical param
eters for the FVLBM arer51.0, t50.5, Dt50.25, and
Dx5Dy51.0. The Nx3Ny564332 grids are used. We
have set the external body force toF52.60431025ex so that
the maximum velocity forux is 0.01 in the case ofA50, and
the compressibility of the fluid is thus negligible. Since the
is no analytical solution for the Poiseuille flow in the curve
channel, we have solved the same problem by using
Navier-Stokes equation with the standard marker-and-
~MAC! method in order to explicitly verify our FVLBM
scheme. In Fig. 6 we plot the numerical results of the vel
ity field from the FVLBM and the numerical solutions from

n
FIG. 4. Numerical velocity profile~data points! in the steady

state for rotating Couette flow, compared with the analytical so
tion ~solid curve! vu(r )50.01(r /30-60/r ).

FIG. 5. The quadrilateral meshes used for Poiseuille flow
tween two curved plates.
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FIG. 6. Velocity profiles in steady state for Poiseuille flow between two curved plates. Thex-component velocity was plotted in~a!
ux(x50,y), ~b! ux(x53l/4,y), and they-component velocity was plotted in~c! uy(x50,y), ~d! uy(x53l/4,y). Two sets of symbols stand
for finite-volume LBE simulations~circles! and MAC simulations of the Navier-Stokes equation~plus!.
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the Navier-Stokes equation. Excellent agreement was fo
as shown in the figures.

We also simulate the two-dimensional problem of pla
Couette flow but with a half-cylinder of radiusR resting on
the bottom plane. The cylinder center is placed in the ori
of the coordinates (x50,y50). The bottom planey50 is at
rest and the top planey5Ly moves with uniform velocity
Uêx . The flow field would beux5Uy/Ly in the absence o
the half-cylinder. The quadrilateral meshes used for
simulation are shown in Fig. 7. The meshes are gener

FIG. 7. The quadrilateral meshes used for flow past a h
cylinder resting on a plane.
nd

e

n

e
ed

using the usual conformal mapping of complex potential.
in most practices, more grids are placed close to the r
body since the fluid velocity changes more rapidly near
solid boundary in order for the nonslip condition to be sat
fied. In the simulation we useR520 for the radius of cylin-
der, U50.1 for the top plane speed, andLx3Ly

59.5R36R for the physical domain. The numerical param
eters for the FVLBM arer51.0, t50.5, andDt50.25, and
Nx3Ny5100360 grids are used. Figure 8 shows the n
merical results from the FVLBM and the numerical resu
by solving the Navier-Stokes equation with the stand
finite-element method~FEM!. Again excellent agreemen
was found.

In three dimensions, we simulated the Taylor-Coue
flow where fluid is contained between two concentric lo
cylinders as shown in Fig. 9. The outer cylinder rotates w
a velocityVeu , while the inner cylinder is kept at rest, i.e
vu(r 5R1 ,u,z)50 andvu(r 5R2 ,u,z)5V. We set the initial
conditions for the macroscopic velocity field to be zero. W
have taken the radii of the two cylinders to beR1520 and
R2540 and the rotating speed of the outer cylinderV to be
0.01. We choose the fluid densityr51.0 and relaxation time
t51.0 with external bodyF50. The numerical parameter

f-
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for the time and grid step areDt50.25, Du5p/45, Dr
51.0, andDz51.0. The total ofNu3Nr3Nz590321332
mesh grids are used. In Fig. 10 we show the numerical
sults of the steady velocity profile and the correspo
ing analytical solution vu(r )5V@R1R2 /(R2

22R1
2)#(r /R1

2R1 /r ). From Fig. 10 one can see that the agreement w
the theoretical results is excellent, and the global error w
found to beL153.2631026.

We have also simulated a flow where the inner cylind
moves parallel to its axis with constant velocityVez inside a
coaxial cylinder, which is kept at rest, i.e.,vz(r 5R1 ,u,z)

FIG. 8. Velocity fieldux(x50,y) in the center of the channel i
plotted. Two sets of symbols stand for finite volume LBE simu
tions ~circles! and FEM simulations of the Navier-Stokes equati
~plus!.

FIG. 9. Scheme diagram for the flow between two concen
cylinders.
e-
-

h
s

r

5V andvz(r ,u,r 5R2)50. Obviously, this is different from
Taylor-Couette rotating flow, where the boundary conditi
is vu(r 5R1 ,u,z)50 andvu(r 5R2 ,u,z)5V. In the simula-
tion, the numerical parameters~fluid density, relaxation, time
step, etc.! are the same as in the rotating Couette flo
Again, we have compared our numerical results with
analytical solutionvz(r )5V ln(r /R2)/ln(R1 /R2). In Fig. 11
we show the numerical results and find that they agree
tremely well with the theoretical result. The global error w
found to beL154.1631026.

In the final example, we apply the FVLBM to simulat
the Poiseuille flow between the two concentric long cyl
ders. The flow has the analytical velocity profile betwe
two cylinders,

vz~r !5
F

4rn FR2
22r 21

R2
22R1

2

ln~R2 /R1!
lnS r

R2
D G ~37!

for R1<r<R2 with boundary conditionvz(r 5R1 ,u,z)
5vz(r 5R2 ,u,z)50. We choose the fluid densityr51.0,

-

c

FIG. 10. Numerical velocity profile~data points! in the steady
state for rotating Taylor-Couette flow, compared with the analyti
solution ~solid curve! vu(r )5V@R1R2 /(R2

22R1
2)#(r /R12R1 /r ).

FIG. 11. Numerical velocity profiles in the steady state for t
inner cylinder moving parallel to thez axis with constant velocity
Vez while the outer cylinder kept at rest. The analytical solution
the solid curvevz(r )5V ln(r /R2)/ln(R1 /R2).
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relaxation timet51.0(n5t/3), and external body forceF
5(20/3)31025ez . The time step and grid step areDt
50.25, Du5p/45, Dr 51.0, and Dz51.0. A total of
Nu3Nr3Nz590321332 mesh grids are used. It is wort
emphasizing again that even though the Poiseuille flow pr
lem has high symmetry in velocity field, the FVLBM schem
needs no preassumptions of flow symmetry. The numer
result of Fig. 12 is compared with the theoretical curve. T
agreement with the theoretical results is excellent, and glo
error was found to beL152.7531025.

FIG. 12. Numerical velocity profiles in the steady flow for Po
seuille flow between two concentric long cylinders, compared w
the analytical solution ~solid curve! vz(r )5F/(4rn)$R2

22r 2

1@(R2
22R1

2)/ln(R2 /R1)# ln(r /R2)%.
d
A

b-

al
e
al

V. CONCLUDING REMARKS

To conclude, we have proposed finite-volume schemes
solving the lattice Boltzmann equation in two and three
mensions. The schemes are flexible and can be applie
unsteady, incompressible fluid flow in a wide variety of r
gions which contain arbitrarily shaped internal and exter
boundaries. The schemes involve minimum approximat
and do not need to introduce any free parameters. We h
not found numerical diffusion problems in our finite-volum
schemes. The CFL condition in the current finite-volum
scheme is found to be of the formv iDtc/h<1, whereh is a
minimum length scale of the control volume andc is a con-
stant depending on the shape of the control volume. T
formulation on which our schemes are based does not req
a special mesh connectivity. This allows the LBE methods
be applied to many interesting systems that were previou
difficult to treat using the conventional LBM, as we illus
trated in this paper. Several applications such as turbu
flow near airfoil as well as extensions to thermal proble
are under investigation and will be reported in subsequ
publications.
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